

Classify Two-Dimensional and Three-Dimensional Figures

Show What You Know

Plane Shapes

Chapter

Types of Angles Classify each angle as acute, obtuse, right, or straight.

Visualize It

Sort the checked words into the circle map.

Understand Vocabulary

Write the preview word that answers the riddle.

- I am a solid figure with two bases that are the exact same shape and size and are connected with lateral faces that are rectangles.
- **2.** I am a polygon in which all sides are the same length and all angles have the same measures.
- **3.** I am a solid figure with faces that are polygons.
- **4.** I am a polygon that connects with the bases of a polyhedron.

Connect to Vocabulary

Review Words

- ✓ acute triangle
- ✓ hexagon
- ✓ obtuse triangle
- ✓ octagon
- ✓ parallelogram polygon quadrilateral
- ✓ rectangle
- ✓ rhombus
- right triangle sphere
- ✓ trapezoid

<mark>Preview Words</mark>

base equilateral triangle isosceles triangle lateral face polyhedron prism pyramid regular polygon scalene triangle

Identify and Classify Two-Dimensional Figures

I Can identify and classify triangles and quadrilaterals.

UNLOCK the Problem Real World

The path that a runner must complete in order to score a run forms a baseball diamond. What polygon do you see in the structure? How many sides, angles, and vertices does this polygon have?

A **polygon** is a closed plane figure formed by three or more line segments that meet at points called vertices. It is named by the number of sides and angles it has.

A polygon with 3 sides, 3 angles, and 3 vertices is called a triangle.

This triangle is because it has sides of equal

length. It is also a ______ triangle because it has ______ angle(s).

One Way

You can classify a triangle by its sides.

Lesson 1

Florida's B.E.S.T.

 Geometric Reasoning 5.GR.1.1
 Mathematical Thinking & Reasoning MTR.1.1, MTR.5.1, MTR.7.1

What pattern do you see among the number of sides, angles, and

vertices a triangle has?

Try Another Problem

You can use attributes of quadrilaterals such as pairs of parallel sides, equal side lengths, and right angles to classify them.

Quadrilateral	Attributes	Example
Parallelogram	Two pairs of parallel sides and opposite sides of the same length	
Rectangle	2 pairs of parallel sides, 4 right angles, and opposite sides of the same length	
Rhombus	Two pairs of parallel sides and 4 of the same length	$\langle \rangle$
Square	2 pairs of parallel sides, 4 right angles, and 4 of the same length	
Trapezoid	At least 1 pair of parallel sides.	

Remember

The slashes indicate equal side lengths. The sides with the same number of slashes are the same length. The > indicate parallel sides.

Example

This polygon is a _____ because it has _____

parallel sides and ______ sides of equal length.

What are some other names for this figure?

A **regular polygon** has sides that are all of equal length and angles that all have the same measure.

Share and Show Math Board

- **1.** Identify the polygon.
 - a. Give all possible names for the triangle.
 - b. Do all sides have the same length and all angles measure the same?
 - c. Is the polygon a regular polygon?

of

MTR Use patterns and 5.1 structure.

Why is a trapezoid a quadrilateral but not a parallelogram?

Name .

© Houghton Mifflin Harcourt Publishing Company

476 Florida's B.E.S.T. Go Math! Grade 5

The Castel del Monte in Apulia, Italy, was built more than 750 years ago. The fortress has one central building with eight surrounding towers.

For 10-11, use the Castel del Monte floor plan at the right.

- **10.** Which polygons in the floor plan have four sides of the same length and four angles with the same measure? How many of these polygons are there?
- **11.** Is there a quadrilateral in the floor plan that is not a regular polygon? Name the quadrilateral and tell how many of the quadrilaterals are in the floor plan.
- **12.** Complete the Venn diagram for quadrilaterals. Use *quadrilaterals, rhombus, parallelograms, squares, trapezoids,* and *rectangles*. Label each quadrilateral.

13. Explain why an equilateral triangle is always an isosceles triangle but an isosceles triangle is not always an equilateral triangle.

14. Pascale drew the figure shown. For 14a–14b, choose the values and term that correctly describe the figure Pascale drew.
14a. The figure has 4
6
12
14b. The figure is a regular triangle regular quadrilateral.

Go Online

Interactive Examples

Identify and Classify Two-Dimensional Figures

List all possible names for the polygon.

4.

3.

Problem Solving Real

5. Complete the diagram. Use *quadrilaterals, rhombuses, parallelograms, squares, polygons* and *rectangles.* You will use one quadrilateral more than once.

- 6. Which quadrilateral did you use more than once in Problem 5? Why?
- **7.** Sketch four points. Then, connect the points to form a closed plane figure. What kind of polygon did you draw?
- **8.** Sketch three points. Then, connect the points to form a closed plane figure. What kind of polygon did you draw?
- **9. WRITE** *Math* Use grid paper to draw one regular quadrilateral and one quadrilateral that is not regular. Explain the difference.

Lesson Check

10. List all possible names for the polygon.

11. List all possible names for the polygon.

Spiral Review

- **12.** Shyann needs 16 notebooks for her research. The notebooks come in packs of 3. Each pack costs \$3.95. How much will she spend on the notebooks?
- **13.** Multiply.
 - $\frac{2}{3} \times \frac{5}{8}$

- **14.** Jenna has 30 barrettes. She is organizing her barrettes into 6 boxes. She puts the same number of barrettes in each box. Write an expression that you can use to find the number of barrettes in each box.
- **15.** Divide.
 - $7 \div \frac{3}{4}$

UNLOCK the Problem

Lesson 2

Florida's B.E.S.T.

 Geometric Reasoning 5.GR.1.1
 Mathematical Thinking & Reasoning MTR.1.1, MTR.2.1, MTR.5.1

Real World

Activity Classify triangle <i>ABC</i> by the lengths of its sides and by the measures of its angles.		• What type of triangle has 3 sides of different lengths?
Materia	S centimeter ruler protractor	 What is an angle called that is greater than 90° and less than 180°?
STEP 1 N u: si tr	Neasure the sides of the triangle Ising a centimeter ruler. Label each ide with its length. Classify the riangle by the lengths of its sides.	B
STEP 2 N u: w by	Neasure the angles of the triangle using a protractor. Label each angle with its measure. Classify the triangle by the measures of its angles.	c
Triangle A	ABC is a triangle	ð.

Try This! Draw the type of triangle described by the lengths of its sides and by the measures of its angles.

	Triangle by Length of Sides			
		Scalene	Isosceles	
Angle Measure	Acute	Think: I need to draw a triangle that is acute and scalene.		
Triangle by	Obtuse		(Table)	
			Matn Talk	MTR Enga
				Can you dra

© Houghton Mifflin Harcourt Publishing Company

right equilateral? Explain.

Share and Show Moth Board

Classify the triangle. Write *isosceles, scalene,* or *equilateral*. Then write *acute, obtuse,* or *right*.

6. Circle the figure that does not belong. Explain.

7. Draw 2 equilateral triangles that are congruent and share a side. What polygon is formed? Is it a regular polygon?

Problem Solving · Applications

- **8.** Shannon said that a triangle with exactly 2 sides of the same length and an obtuse angle is an equilateral obtuse triangle. Describe her error.
- **9.** Jace drew a triangle with exactly 2 sides of the same length and 3 acute angles. Which of the following accurately describes the triangle? Mark all that apply.

Connect to Science

Forces and Balance

What makes triangles good for the construction of buildings or bridges? The 3 fixed lengths of the sides of a triangle, when joined, can form no other shape. So, when pushed, triangles don't bend or break.

MTR Classify the triangles in the structures below. Write *isosceles, scalene,* or *equilateral*. Then write *acute, obtuse,* or *right*.

A triangle has sides with the lengths and angle measures given. Classify the triangle. Write *scalene, isosceles,* or *equilateral*. Then write *acute, obtuse,* or *right*.

5. sides: 44 mm, 28 mm, 24 mm angles: 110°, 40°, 30° **6.** sides: 23 mm, 20 mm, 13 mm angles: 62°, 72°, 46°

- **7.** Arielle says the pen for her horse is an acute right triangle. Is this possible? Explain.
- **8.** Hanan says every equilateral triangle is acute. Is this true? Explain.
- **9. WRITE** *Math* Draw three triangles: one equilateral, one isosceles, and one scalene. Label each and explain how you classified each triangle.

Lesson Check

- 10. If two of a triangle's angles measure 42° and 48°, how would you classify that triangle? Write *acute, obtuse,* or *right*.
- **11.** What is the classification of the following triangle? Write *scalene, isosceles,* or *right*.

Spiral Review

- **12.** How many tons are equal to 40,000 pounds?
- **13.** Choose a symbol to make the following statement true. Write >, <, or =.

6 kilometers 600 centimeters

14. What polygon is shown?

15. List all the possible names for the polygon.

Classify Quadrilaterals

I Can classify and compare quadrilaterals.

Real UNLOCK the Problem Morld

A seating chart for a baseball field has many four-sided figures, or **quadrilaterals**. What types of quadrilaterals can you find in the seating chart?

There are five special types of quadrilaterals. You can classify quadrilaterals by their properties, such as parallel sides and perpendicular sides. Parallel lines are lines that are always the same distance apart. Perpendicular lines are lines that intersect to form four right angles.

Complete the sentence that describes each type of quadrilateral.

Florida's B.E.S.T.

• Geometric Reasoning 5.GR.1.1 Mathematical Thinking & Reasoning

CHAPTER 14

Lesson 3

Chapter 14 • Lesson 3 485

Activity

Materials quadrilaterals scissors

You can use a Venn diagram to sort quadrilaterals and find out how they are related.

- Draw the diagram below on your MathBoard.
- Cut out the quadrilaterals and sort them into the Venn diagram.
- Record your work by drawing each figure you have placed in the Venn diagram below.

Complete the sentences by writing <i>always, sometimes,</i> or <i>never</i> .		
A rhombus is	a square.	
A parallelogram is a rectangle.		
A rhombus is		
a parallelogram.		
A trapezoid is		
a parallelogram.		
A parellelogram is	a trapezoid.	
A square is	_ a rhombus.	

- **1.** Explain why the circle for parallelograms is inside the circle for trapezoids.
- **2.** Explain why the section of the Venn diagram for squares intersects with both the section for rhombuses and the section for rectangles.

Share and Show Math Board

Name

- **1.** Use quadrilateral *ABCD* to answer each question. Complete the sentence.
 - a. Measure the sides. Are any of the sides the same length? ______ Mark any sides that are the same length.
 - **b.** How many right angles, if any, does the quadrilateral have?
 - c. How many pairs of parallel sides, if any, does the quadrilateral have?
 - So, quadrilateral *ABCD* is a ______ and a ______.

Classify the quadrilateral in as many ways as possible. Write *quadrilateral, trapezoid, parallelogram, rectangle, rhombus,* or *square*.

MTR Use patterns and **5.1** structure

D

Can a trapezoid have more than one pair of parallel sides that have the same length? Explain your answer.

В

Classify the quadrilateral in as many ways as possible. Write *quadrilateral, trapezoid, parallelogram, rectangle, rhombus, or square.*

Problem Solving · Applications Real

- **8.** A quadrilateral has exactly 2 sides of equal length. Which quadrilateral types could it be? Which quadrilaterals could it not be?
- **9.** A quadrilateral has exactly 3 sides of equal length. Davis claims that the figure must be a rectangle. Why is his claim incorrect? Use a diagram to explain your answer.

- **10. MTR** The opposite corners of a quadrilateral are right angles. The quadrilateral is not a rhombus. What kind of quadrilateral is this figure? Explain how you know.
- **11.** I am a figure with four sides. I can be placed in the following categories: quadrilateral, trapezoid, parallelogram, rectangle, rhombus, and square. Draw me. Explain why I fit into each category.

- **12.** For 12a–12c, write the name of one quadrilateral from the tiles to complete a true statement. Use each quadrilateral only once.
 - 12a. A ______ is sometimes a square.
 - 12b. A ______ is always a rectangle.
 - **12c.** A parallelogram is always a ______.

Lesson Check

- **10.** Complete the following statement. Write *sometimes, always,* or *never*.
- **11.** Complete the following statement. Write *sometimes, always,* or *never*.

A trapezoid _____ has exactly one pair of parallel sides.

A rhombus _____ has four angles with the same measure.

Spiral Review

- **12.** How many kilograms are equal to 5,000 grams?
- 13. The sides of a triangle measure 6 inches, 8 inches, and 10 inches. The triangle has one 90° angle. What type of triangle is it?

- **14.** A warehouse has 355 books to ship. Each shipping carton holds 14 books. How many cartons does the warehouse need to ship all of the books?
- 15. How many vertices does a rhombus have?

Identify and Classify Three-Dimensional Figures

I Can identify, describe, and classify three-dimensional figures.

UNLOCK the Problem

A solid figure has three dimensions: length, width, and height. **Polyhedrons**, such as prisms and pyramids, are three-dimensional figures with faces that are polygons.

A **prism** is a polyhedron that has two same-size and same-shape polygons as **bases**.

A polyhedron's **lateral faces** are polygons that connect with the bases. The lateral faces of a prism are rectangles.

baseA prism's base shape is used to namelateral facethe solid figure. The base shape ofbasethis prism is a triangle. The prism is atriangular prism.

Identify the base shape of the prism. Use the terms in the box to correctly name the prism by its base shape.

Base shape: ____

Base shape:

Name the solid figure.

Name the solid figure.

• Mathematical Thinking & Reasoning MTR.1.1, MTR.2.1, MTR.3.1, MTR.5.1

CHAPTER 14

Lesson **4**

Math Idea

A two-dimensional figure has the dimensions length and width, which are used to find the figure's area.

A three-dimensional figure, or solid, has three dimensions: length, width, and height. These dimensions are used to find the figure's volume, or the space it occupies.

triangular prism.	Types of Prisms
he prism. Use the terms in the prism by its base shape.	decagonal prism octagonal prism hexagonal prism pentagonal prism rectangular prism triangular prism
Base shape: Name the solid figure.	
Base shape:	Math Talk Use patterns and 5.1 structure.
Name the solid figure.	What shapes make up a decagonal prism, and how many are there? Explain.

C Houghton Mifflin Harcourt Publishing Company

MTR What special prism has same-size squares for bases and lateral faces?

⊘6.

5.

Name the solid figure.

4.

Name

On Your Own

Classify the solid figure. Write prism, pyramid, cone, cylinder, or sphere.

Problem Solving · Applications

16. MTR Mario is making a sculpture out of stone. He starts by carving a base with five sides. He then carves five triangular lateral faces that all meet at an apex. What three-dimensional figure does Mario make?

18. Compare the characteristics of prisms and pyramids. Tell how they are alike and how they are different.

17. What is another name for a cube? Explain your reasoning.

19. Write the letter in the box that correctly describes the three-dimensional figure.

Connect to Reading

Identify the Details

If you were given a description of a building and asked to identify which one of these three buildings is described, which details would you use to determine the building?

A word problem contains details that help you solve the problem. Some details are meaningful and are important to finding the solution and some details may not be. *Identify the details* you need to solve the problem.

Example Read the description. Underline the details you need to identify the solid figure that will name the correct building.

This building is one of the most identifiable structures in its city's skyline. It has a square foundation and 28 floors. The building has four triangular exterior faces that meet at a point at the top of the structure.

Identify the solid figure and name the correct building.

20. Solve the problem in the Example.

Solid figure: _____

Building:

21. This building was completed in 1902. It has a triangular foundation and a triangular roof that are the same size and shape. The three sides of the building are rectangles.

Solid figure:

Building:

Flatiron Building, New York City, New York

 Nehru Science Center, Mumbai, India

Luxor Hotel, Las Vegas, Nevada

Problem Solving Real

- **10.** Nanako said she drew a square pyramid and that all of the faces are triangles. Is this possible? Explain.
- **11. WRITE** *Math* Explain why a threedimensional figure with a curved surface is not a polyhedron.

Lesson Check

- **12.** Esteban made a model of a solid figure with 1 circular base and 1 curved surface. What solid figure did he make?
- **13.** How many rectangular faces does a hexagonal pyramid have?

Spiral Review

- **14.** Laura walks $\frac{3}{5}$ mile to school each day. Isaiah's walk to school is 3 times as long as Laura's. How far does Isaiah walk to school each day?
- **15.** Kaden has $4\frac{3}{4}$ feet of rope. He plans to cut off $1\frac{1}{2}$ feet from the rope. How much rope will be left?

- **16.** Latasha made 128 ounces of punch. How many cups of punch did Latasha make?
- **17.** Complete the following statement. Write *sometimes, always,* or *never*.

Trapezoids are _____ parallelograms.

Chapter Review

- 1. Fran drew a triangle with 3 sides of different lengths and 1 right angle. Which term accurately describes the triangle? Mark all that apply.
 - (\mathbf{A}) (\mathbf{C}) isosceles
 - acute

 (\mathbf{B}) scalene

- (D) right
- 2. Jenvieve draws a quadrilateral with 2 pairs of opposite sides that are parallel. The figure has no right angles. Draw and name two figures that she could have drawn.

3. Mr. Delgado sees this sign while he is driving. For numbers 3a–3b, choose the values and term that correctly describes the shape Mr. Delgado saw.

4. Is this figure a polygon? Explain.

5. Match each figure with its number of vertices. Not every number of vertices will be used.

6. Chuck is making a poster about polyhedrons for his math class. He will draw figures and organize them in different sections of the poster.

Part A

Chuck wants to draw three-dimensional figures whose lateral faces are rectangles. He says he can draw prisms and pyramids. Do you agree? Explain your answer.

Part B

Chuck says that he can draw a cylinder on his polyhedron poster because it has a pair of bases that are the same size and shape. Is Chuck correct? Explain your reasoning.

Name .

7. Javier drew the shape shown. For numbers 7a–7b, choose the values and term that correctly describe the shape Javier drew.

- **8.** Which words describe this figure? Mark all that apply.
 - A triangle
 B quadrilateral
 C trapezoid
 D polygon
- **9.** Nathan drew a scalene, obtuse triangle. For numbers 9a–9c, choose Yes or No to indicate whether the figure shown could be the triangle that Nathan drew.

10. Tell whether the figure is a *polygon*, a *polyhedron*, or *neither*.

11. Mario is making a diagram that shows the relationship between different kinds of quadrilaterals. In the diagram, each quadrilateral on a lower level can also be described by the quadrilateral(s) above it on higher levels.

Part A

Complete the diagram by writing the name of one figure from the tiles in each box. Not every figure will be used.

Part B

Mario claims that a rhombus is *sometimes* a square, but a square is *always* a rhombus. Is he correct? Explain your answer.

Name .

12. Write the letter in the box that correctly describes the three-dimensional figure.

- **13.** How can you classify the triangle? Give all possibilities. Explain.
 - 13a. a triangle with two sides that are 7.3 cm long
 - 13b. a triangle with an acute angle
- **14.** 14a. Classify the three-dimensional figures. Write *cone*, *cylinder*, or *sphere*.

14b. Why are these figures *not* polyhedrons?

15. For numbers 15a–15c, write the name of one quadrilateral from the tiles to complete a true statement. Use each quadrilateral once only.

16. How many lateral faces does this polyhedron have? What is the shape of the lateral faces?

17. How many bases does this polyhedron have? What is the shape of the base?

18. Select True or False for each statement about the figure.

18a.	The figure has no right angles.	⊖ True	○ False
18b.	The figure has two acute angles.	⊖ True	○ False
18c.	The figure has two sides of equal length.	⊖ True	○ False
18d.	The figure is an equilateral triangle.	O True	O False